| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtruarb | Unicode version | ||
| Description: At least two sets exist
(or in terms of first-order logic, the universe
of discourse has two or more objects). This theorem asserts the
existence of two sets which do not equal each other; compare with
dtruex 4302 in which we are given a set |
| Ref | Expression |
|---|---|
| dtruarb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el 3952 |
. . 3
| |
| 2 | ax-nul 3904 |
. . . 4
| |
| 3 | sp 1441 |
. . . 4
| |
| 4 | 2, 3 | eximii 1533 |
. . 3
|
| 5 | eeanv 1848 |
. . 3
| |
| 6 | 1, 4, 5 | mpbir2an 883 |
. 2
|
| 7 | nelneq2 2180 |
. . 3
| |
| 8 | 7 | 2eximi 1532 |
. 2
|
| 9 | 6, 8 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |