![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dtruarb | Unicode version |
Description: At least two sets exist
(or in terms of first-order logic, the universe
of discourse has two or more objects). This theorem asserts the
existence of two sets which do not equal each other; compare with
dtruex 4302 in which we are given a set ![]() ![]() |
Ref | Expression |
---|---|
dtruarb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el 3952 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-nul 3904 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sp 1441 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eximii 1533 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eeanv 1848 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 1, 4, 5 | mpbir2an 883 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | nelneq2 2180 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | 2eximi 1532 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 ax-nul 3904 ax-pow 3948 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |