ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtruarb GIF version

Theorem dtruarb 3962
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). This theorem asserts the existence of two sets which do not equal each other; compare with dtruex 4302 in which we are given a set 𝑦 and go from there to a set 𝑥 which is not equal to it. (Contributed by Jim Kingdon, 2-Sep-2018.)
Assertion
Ref Expression
dtruarb 𝑥𝑦 ¬ 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtruarb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 el 3952 . . 3 𝑥 𝑧𝑥
2 ax-nul 3904 . . . 4 𝑦𝑧 ¬ 𝑧𝑦
3 sp 1441 . . . 4 (∀𝑧 ¬ 𝑧𝑦 → ¬ 𝑧𝑦)
42, 3eximii 1533 . . 3 𝑦 ¬ 𝑧𝑦
5 eeanv 1848 . . 3 (∃𝑥𝑦(𝑧𝑥 ∧ ¬ 𝑧𝑦) ↔ (∃𝑥 𝑧𝑥 ∧ ∃𝑦 ¬ 𝑧𝑦))
61, 4, 5mpbir2an 883 . 2 𝑥𝑦(𝑧𝑥 ∧ ¬ 𝑧𝑦)
7 nelneq2 2180 . . 3 ((𝑧𝑥 ∧ ¬ 𝑧𝑦) → ¬ 𝑥 = 𝑦)
872eximi 1532 . 2 (∃𝑥𝑦(𝑧𝑥 ∧ ¬ 𝑧𝑦) → ∃𝑥𝑦 ¬ 𝑥 = 𝑦)
96, 8ax-mp 7 1 𝑥𝑦 ¬ 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wal 1282  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-ext 2063  ax-nul 3904  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-cleq 2074  df-clel 2077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator