ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelim Unicode version

Theorem dvelim 1934
Description: This theorem can be used to eliminate a distinct variable restriction on  x and  z and replace it with the "distinctor"  -.  A. x x  =  y as an antecedent.  ph normally has  z free and can be read  ph ( z ), and  ps substitutes  y for  z and can be read  ph ( y ). We don't require that 
x and  y be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with  A. x A. z, conjoin them, and apply dvelimdf 1933.

Other variants of this theorem are dvelimf 1932 (with no distinct variable restrictions) and dvelimALT 1927 (that avoids ax-10 1436). (Contributed by NM, 23-Nov-1994.)

Hypotheses
Ref Expression
dvelim.1  |-  ( ph  ->  A. x ph )
dvelim.2  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
dvelim  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Distinct variable group:    ps, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)

Proof of Theorem dvelim
StepHypRef Expression
1 dvelim.1 . 2  |-  ( ph  ->  A. x ph )
2 ax-17 1459 . 2  |-  ( ps 
->  A. z ps )
3 dvelim.2 . 2  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3dvelimf 1932 1  |-  ( -. 
A. x  x  =  y  ->  ( ps  ->  A. x ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103   A.wal 1282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator