ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrdav Unicode version

Theorem eqrdav 2080
Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.)
Hypotheses
Ref Expression
eqrdav.1  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  C )
eqrdav.2  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  C )
eqrdav.3  |-  ( (
ph  /\  x  e.  C )  ->  (
x  e.  A  <->  x  e.  B ) )
Assertion
Ref Expression
eqrdav  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    C( x)

Proof of Theorem eqrdav
StepHypRef Expression
1 eqrdav.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  C )
2 eqrdav.3 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  (
x  e.  A  <->  x  e.  B ) )
32biimpd 142 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
x  e.  A  ->  x  e.  B )
)
43impancom 256 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  C  ->  x  e.  B )
)
51, 4mpd 13 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  B )
6 eqrdav.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  C )
72exbiri 374 . . . . . 6  |-  ( ph  ->  ( x  e.  C  ->  ( x  e.  B  ->  x  e.  A ) ) )
87com23 77 . . . . 5  |-  ( ph  ->  ( x  e.  B  ->  ( x  e.  C  ->  x  e.  A ) ) )
98imp 122 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  e.  C  ->  x  e.  A )
)
106, 9mpd 13 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
115, 10impbida 560 . 2  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
1211eqrdv 2079 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-17 1459  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074
This theorem is referenced by:  supminfex  8685  fzdifsuc  9098
  Copyright terms: Public domain W3C validator