| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrdav | Unicode version | ||
| Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) |
| Ref | Expression |
|---|---|
| eqrdav.1 |
|
| eqrdav.2 |
|
| eqrdav.3 |
|
| Ref | Expression |
|---|---|
| eqrdav |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdav.1 |
. . . 4
| |
| 2 | eqrdav.3 |
. . . . . 6
| |
| 3 | 2 | biimpd 142 |
. . . . 5
|
| 4 | 3 | impancom 256 |
. . . 4
|
| 5 | 1, 4 | mpd 13 |
. . 3
|
| 6 | eqrdav.2 |
. . . 4
| |
| 7 | 2 | exbiri 374 |
. . . . . 6
|
| 8 | 7 | com23 77 |
. . . . 5
|
| 9 | 8 | imp 122 |
. . . 4
|
| 10 | 6, 9 | mpd 13 |
. . 3
|
| 11 | 5, 10 | impbida 560 |
. 2
|
| 12 | 11 | eqrdv 2079 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 |
| This theorem is referenced by: supminfex 8685 fzdifsuc 9098 |
| Copyright terms: Public domain | W3C validator |