ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex Unicode version

Theorem supminfex 8685
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
supminfex.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
supminfex  |-  ( ph  ->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
Distinct variable groups:    w, A, x, y, z    ph, x, y, z
Allowed substitution hint:    ph( w)

Proof of Theorem supminfex
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
2 supminfex.ss . . . . 5  |-  ( ph  ->  A  C_  RR )
31, 2supinfneg 8683 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) )
4 ssrab2 3079 . . . . 5  |-  { w  e.  RR  |  -u w  e.  A }  C_  RR
54a1i 9 . . . 4  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  A }  C_  RR )
63, 5infrenegsupex 8682 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  ) )
7 elrabi 2746 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  ->  x  e.  RR )
87adantl 271 . . . . . 6  |-  ( (
ph  /\  x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } )  ->  x  e.  RR )
92sselda 2999 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
10 negeq 7301 . . . . . . . . . 10  |-  ( z  =  x  ->  -u z  =  -u x )
1110eleq1d 2147 . . . . . . . . 9  |-  ( z  =  x  ->  ( -u z  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u x  e. 
{ w  e.  RR  |  -u w  e.  A } ) )
1211elrab3 2750 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  -u x  e. 
{ w  e.  RR  |  -u w  e.  A } ) )
13 renegcl 7369 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u x  e.  RR )
14 negeq 7301 . . . . . . . . . . 11  |-  ( w  =  -u x  ->  -u w  =  -u -u x )
1514eleq1d 2147 . . . . . . . . . 10  |-  ( w  =  -u x  ->  ( -u w  e.  A  <->  -u -u x  e.  A ) )
1615elrab3 2750 . . . . . . . . 9  |-  ( -u x  e.  RR  ->  (
-u x  e.  {
w  e.  RR  |  -u w  e.  A }  <->  -u -u x  e.  A
) )
1713, 16syl 14 . . . . . . . 8  |-  ( x  e.  RR  ->  ( -u x  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u -u x  e.  A ) )
18 recn 7106 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
1918negnegd 7410 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u -u x  =  x )
2019eleq1d 2147 . . . . . . . 8  |-  ( x  e.  RR  ->  ( -u -u x  e.  A  <->  x  e.  A ) )
2112, 17, 203bitrd 212 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  x  e.  A ) )
2221adantl 271 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  x  e.  A
) )
238, 9, 22eqrdav 2080 . . . . 5  |-  ( ph  ->  { z  e.  RR  |  -u z  e.  {
w  e.  RR  |  -u w  e.  A } }  =  A )
2423supeq1d 6400 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
2524negeqd 7303 . . 3  |-  ( ph  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  )  = 
-u sup ( A ,  RR ,  <  ) )
266, 25eqtrd 2113 . 2  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  ) )
27 lttri3 7191 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
2827adantl 271 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
2928, 3infclti 6436 . . . 4  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  RR )
3029recnd 7147 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  CC )
3128, 1supclti 6411 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
3231recnd 7147 . . 3  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  CC )
33 negcon2 7361 . . 3  |-  ( (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  CC  /\ 
sup ( A ,  RR ,  <  )  e.  CC )  ->  (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) ) )
3430, 32, 33syl2anc 403 . 2  |-  ( ph  ->  (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )
) )
3526, 34mpbid 145 1  |-  ( ph  ->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   {crab 2352    C_ wss 2973   class class class wbr 3785   supcsup 6395  infcinf 6396   CCcc 6979   RRcr 6980    < clt 7153   -ucneg 7280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sup 6397  df-inf 6398  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator