ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreu Unicode version

Theorem eqreu 2784
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
eqreu.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
eqreu  |-  ( ( B  e.  A  /\  ps  /\  A. x  e.  A  ( ph  ->  x  =  B ) )  ->  E! x  e.  A  ph )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem eqreu
StepHypRef Expression
1 ralbiim 2491 . . . . 5  |-  ( A. x  e.  A  ( ph 
<->  x  =  B )  <-> 
( A. x  e.  A  ( ph  ->  x  =  B )  /\  A. x  e.  A  ( x  =  B  ->  ph ) ) )
2 eqreu.1 . . . . . . 7  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
32ceqsralv 2630 . . . . . 6  |-  ( B  e.  A  ->  ( A. x  e.  A  ( x  =  B  ->  ph )  <->  ps )
)
43anbi2d 451 . . . . 5  |-  ( B  e.  A  ->  (
( A. x  e.  A  ( ph  ->  x  =  B )  /\  A. x  e.  A  ( x  =  B  ->  ph ) )  <->  ( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps )
) )
51, 4syl5bb 190 . . . 4  |-  ( B  e.  A  ->  ( A. x  e.  A  ( ph  <->  x  =  B
)  <->  ( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps ) ) )
6 reu6i 2783 . . . . 5  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  B ) )  ->  E! x  e.  A  ph )
76ex 113 . . . 4  |-  ( B  e.  A  ->  ( A. x  e.  A  ( ph  <->  x  =  B
)  ->  E! x  e.  A  ph ) )
85, 7sylbird 168 . . 3  |-  ( B  e.  A  ->  (
( A. x  e.  A  ( ph  ->  x  =  B )  /\  ps )  ->  E! x  e.  A  ph ) )
983impib 1136 . 2  |-  ( ( B  e.  A  /\  A. x  e.  A  (
ph  ->  x  =  B )  /\  ps )  ->  E! x  e.  A  ph )
1093com23 1144 1  |-  ( ( B  e.  A  /\  ps  /\  A. x  e.  A  ( ph  ->  x  =  B ) )  ->  E! x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   E!wreu 2350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-v 2603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator