| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equidqe | Unicode version | ||
| Description: equid 1629 with some quantification and negation without using ax-4 1440 or ax-17 1459. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) |
| Ref | Expression |
|---|---|
| equidqe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-9 1464 |
. 2
| |
| 2 | ax-8 1435 |
. . . . 5
| |
| 3 | 2 | pm2.43i 48 |
. . . 4
|
| 4 | 3 | con3i 594 |
. . 3
|
| 5 | 4 | alimi 1384 |
. 2
|
| 6 | 1, 5 | mto 620 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-ie2 1423 ax-8 1435 ax-i9 1463 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
| This theorem is referenced by: ax4sp1 1466 |
| Copyright terms: Public domain | W3C validator |