![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mto | Unicode version |
Description: The rule of modus tollens. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mto.1 |
![]() ![]() ![]() |
mto.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mto |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mto.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mto.1 |
. . 3
![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | pm2.65i 600 |
1
![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 576 ax-in2 577 |
This theorem is referenced by: mtbi 627 pm3.2ni 759 pm5.16 770 intnan 871 intnanr 872 equidqe 1465 nexr 1622 ru 2814 neldifsn 3519 nvel 3910 nlim0 4149 snnex 4199 onprc 4295 dtruex 4302 ordsoexmid 4305 nprrel 4404 0xp 4438 iprc 4618 son2lpi 4741 nfunv 4953 0fv 5229 acexmidlema 5523 acexmidlemb 5524 acexmidlemab 5526 mpt20 5594 php5dom 6349 0nnq 6554 0npr 6673 1ne0sr 6943 pnfnre 7160 mnfnre 7161 ine0 7498 inelr 7684 1nuz2 8693 0nrp 8767 odd2np1 10272 n2dvds1 10312 1nprm 10496 bj-nvel 10688 |
Copyright terms: Public domain | W3C validator |