| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equsexd | Unicode version | ||
| Description: Deduction form of equsex 1656. (Contributed by Jim Kingdon, 29-Dec-2017.) |
| Ref | Expression |
|---|---|
| equsexd.1 |
|
| equsexd.2 |
|
| equsexd.3 |
|
| Ref | Expression |
|---|---|
| equsexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsexd.1 |
. . 3
| |
| 2 | equsexd.2 |
. . 3
| |
| 3 | equsexd.3 |
. . . 4
| |
| 4 | bi1 116 |
. . . . 5
| |
| 5 | 4 | imim2i 12 |
. . . 4
|
| 6 | pm3.31 258 |
. . . 4
| |
| 7 | 3, 5, 6 | 3syl 17 |
. . 3
|
| 8 | 1, 2, 7 | exlimd2 1526 |
. 2
|
| 9 | a9e 1626 |
. . . 4
| |
| 10 | 1 | a1i 9 |
. . . . . . . . 9
|
| 11 | 10, 2 | jca 300 |
. . . . . . . 8
|
| 12 | prth 336 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl 14 |
. . . . . . 7
|
| 14 | 19.26 1410 |
. . . . . . 7
| |
| 15 | 13, 14 | syl6ibr 160 |
. . . . . 6
|
| 16 | 15 | anabsi5 543 |
. . . . 5
|
| 17 | idd 21 |
. . . . . . . 8
| |
| 18 | 17 | a1i 9 |
. . . . . . 7
|
| 19 | 18 | imp 122 |
. . . . . 6
|
| 20 | bi2 128 |
. . . . . . . . 9
| |
| 21 | 20 | imim2i 12 |
. . . . . . . 8
|
| 22 | pm2.04 81 |
. . . . . . . 8
| |
| 23 | 3, 21, 22 | 3syl 17 |
. . . . . . 7
|
| 24 | 23 | imp 122 |
. . . . . 6
|
| 25 | 19, 24 | jcad 301 |
. . . . 5
|
| 26 | 16, 25 | eximdh 1542 |
. . . 4
|
| 27 | 9, 26 | mpi 15 |
. . 3
|
| 28 | 27 | ex 113 |
. 2
|
| 29 | 8, 28 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: cbvexdh 1842 |
| Copyright terms: Public domain | W3C validator |