| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexdh | Unicode version | ||
| Description: Deduction used to change bound variables, using implicit substitition, particularly useful in conjunction with dvelim 1934. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| cbvexdh.1 |
|
| cbvexdh.2 |
|
| cbvexdh.3 |
|
| Ref | Expression |
|---|---|
| cbvexdh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1459 |
. . 3
| |
| 2 | ax-17 1459 |
. . . 4
| |
| 3 | 2 | hbex 1567 |
. . 3
|
| 4 | cbvexdh.1 |
. . . . 5
| |
| 5 | cbvexdh.2 |
. . . . 5
| |
| 6 | cbvexdh.3 |
. . . . . 6
| |
| 7 | equcomi 1632 |
. . . . . . 7
| |
| 8 | bicom1 129 |
. . . . . . 7
| |
| 9 | 7, 8 | imim12i 58 |
. . . . . 6
|
| 10 | 6, 9 | syl 14 |
. . . . 5
|
| 11 | 4, 5, 10 | equsexd 1657 |
. . . 4
|
| 12 | simpr 108 |
. . . . 5
| |
| 13 | 12 | eximi 1531 |
. . . 4
|
| 14 | 11, 13 | syl6bir 162 |
. . 3
|
| 15 | 1, 3, 14 | exlimdh 1527 |
. 2
|
| 16 | 1, 5 | eximdh 1542 |
. . . 4
|
| 17 | 19.12 1595 |
. . . 4
| |
| 18 | 16, 17 | syl6 33 |
. . 3
|
| 19 | 2 | a1i 9 |
. . . . 5
|
| 20 | 1, 19, 6 | equsexd 1657 |
. . . 4
|
| 21 | simpr 108 |
. . . . 5
| |
| 22 | 21 | eximi 1531 |
. . . 4
|
| 23 | 20, 22 | syl6bir 162 |
. . 3
|
| 24 | 4, 18, 23 | exlimd2 1526 |
. 2
|
| 25 | 15, 24 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: cbvexd 1843 |
| Copyright terms: Public domain | W3C validator |