| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equvin | Unicode version | ||
| Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equvin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equvini 1681 |
. 2
| |
| 2 | ax-17 1459 |
. . 3
| |
| 3 | equtr 1635 |
. . . 4
| |
| 4 | 3 | imp 122 |
. . 3
|
| 5 | 2, 4 | exlimih 1524 |
. 2
|
| 6 | 1, 5 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |