| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euan | Unicode version | ||
| Description: Introduction of a conjunct into uniqueness quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euan.1 |
|
| Ref | Expression |
|---|---|
| euan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euan.1 |
. . . . . 6
| |
| 2 | simpl 107 |
. . . . . 6
| |
| 3 | 1, 2 | exlimih 1524 |
. . . . 5
|
| 4 | 3 | adantr 270 |
. . . 4
|
| 5 | simpr 108 |
. . . . . 6
| |
| 6 | 5 | eximi 1531 |
. . . . 5
|
| 7 | 6 | adantr 270 |
. . . 4
|
| 8 | hbe1 1424 |
. . . . . 6
| |
| 9 | 3 | a1d 22 |
. . . . . . . 8
|
| 10 | 9 | ancrd 319 |
. . . . . . 7
|
| 11 | 5, 10 | impbid2 141 |
. . . . . 6
|
| 12 | 8, 11 | mobidh 1975 |
. . . . 5
|
| 13 | 12 | biimpa 290 |
. . . 4
|
| 14 | 4, 7, 13 | jca32 303 |
. . 3
|
| 15 | eu5 1988 |
. . 3
| |
| 16 | eu5 1988 |
. . . 4
| |
| 17 | 16 | anbi2i 444 |
. . 3
|
| 18 | 14, 15, 17 | 3imtr4i 199 |
. 2
|
| 19 | ibar 295 |
. . . 4
| |
| 20 | 1, 19 | eubidh 1947 |
. . 3
|
| 21 | 20 | biimpa 290 |
. 2
|
| 22 | 18, 21 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 |
| This theorem is referenced by: euanv 1998 2eu7 2035 |
| Copyright terms: Public domain | W3C validator |