| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exists2 | Unicode version | ||
| Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| exists2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbeu1 1951 |
. . . . . 6
| |
| 2 | hba1 1473 |
. . . . . 6
| |
| 3 | exists1 2037 |
. . . . . . 7
| |
| 4 | ax16 1734 |
. . . . . . 7
| |
| 5 | 3, 4 | sylbi 119 |
. . . . . 6
|
| 6 | 1, 2, 5 | exlimdh 1527 |
. . . . 5
|
| 7 | 6 | com12 30 |
. . . 4
|
| 8 | alexim 1576 |
. . . 4
| |
| 9 | 7, 8 | syl6 33 |
. . 3
|
| 10 | 9 | con2d 586 |
. 2
|
| 11 | 10 | imp 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |