ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq2 Unicode version

Theorem f1eq2 5108
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq2  |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )

Proof of Theorem f1eq2
StepHypRef Expression
1 feq2 5051 . . 3  |-  ( A  =  B  ->  ( F : A --> C  <->  F : B
--> C ) )
21anbi1d 452 . 2  |-  ( A  =  B  ->  (
( F : A --> C  /\  Fun  `' F
)  <->  ( F : B
--> C  /\  Fun  `' F ) ) )
3 df-f1 4927 . 2  |-  ( F : A -1-1-> C  <->  ( F : A --> C  /\  Fun  `' F ) )
4 df-f1 4927 . 2  |-  ( F : B -1-1-> C  <->  ( F : B --> C  /\  Fun  `' F ) )
52, 3, 43bitr4g 221 1  |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   `'ccnv 4362   Fun wfun 4916   -->wf 4918   -1-1->wf1 4919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-fn 4925  df-f 4926  df-f1 4927
This theorem is referenced by:  f1oeq2  5138  f1eq123d  5141  brdomg  6252
  Copyright terms: Public domain W3C validator