ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq1 Unicode version

Theorem f1eq1 5107
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq1  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )

Proof of Theorem f1eq1
StepHypRef Expression
1 feq1 5050 . . 3  |-  ( F  =  G  ->  ( F : A --> B  <->  G : A
--> B ) )
2 cnveq 4527 . . . 4  |-  ( F  =  G  ->  `' F  =  `' G
)
32funeqd 4943 . . 3  |-  ( F  =  G  ->  ( Fun  `' F  <->  Fun  `' G ) )
41, 3anbi12d 456 . 2  |-  ( F  =  G  ->  (
( F : A --> B  /\  Fun  `' F
)  <->  ( G : A
--> B  /\  Fun  `' G ) ) )
5 df-f1 4927 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
6 df-f1 4927 . 2  |-  ( G : A -1-1-> B  <->  ( G : A --> B  /\  Fun  `' G ) )
74, 5, 63bitr4g 221 1  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   `'ccnv 4362   Fun wfun 4916   -->wf 4918   -1-1->wf1 4919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927
This theorem is referenced by:  f1oeq1  5137  f1eq123d  5141  fun11iun  5167  fo00  5182  tposf12  5907  f1dom2g  6259  f1domg  6261  dom3d  6277  domtr  6288
  Copyright terms: Public domain W3C validator