| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodmrnu | Unicode version | ||
| Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.) |
| Ref | Expression |
|---|---|
| fodmrnu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 5128 |
. . 3
| |
| 2 | fofn 5128 |
. . 3
| |
| 3 | fndmu 5020 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 283 |
. 2
|
| 5 | forn 5129 |
. . 3
| |
| 6 | forn 5129 |
. . 3
| |
| 7 | 5, 6 | sylan9req 2134 |
. 2
|
| 8 | 4, 7 | jca 300 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-in 2979 df-ss 2986 df-fn 4925 df-f 4926 df-fo 4928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |