| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9req | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 |
|
| sylan9req.2 |
|
| Ref | Expression |
|---|---|
| sylan9req |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 |
. . 3
| |
| 2 | 1 | eqcomd 2086 |
. 2
|
| 3 | sylan9req.2 |
. 2
| |
| 4 | 2, 3 | sylan9eq 2133 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 |
| This theorem is referenced by: xpid11m 4575 fndmu 5020 fodmrnu 5134 funcoeqres 5177 fvunsng 5378 prarloclem5 6690 addlocprlemeq 6723 zdiv 8435 resqrexlemnm 9904 dvdsmulc 10223 cncongrcoprm 10488 |
| Copyright terms: Public domain | W3C validator |