| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > invdisj | Unicode version | ||
| Description: If there is a function
|
| Ref | Expression |
|---|---|
| invdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra2xy 2406 |
. . 3
| |
| 2 | df-ral 2353 |
. . . . 5
| |
| 3 | rsp 2411 |
. . . . . . . . 9
| |
| 4 | eqcom 2083 |
. . . . . . . . 9
| |
| 5 | 3, 4 | syl6ib 159 |
. . . . . . . 8
|
| 6 | 5 | imim2i 12 |
. . . . . . 7
|
| 7 | 6 | impd 251 |
. . . . . 6
|
| 8 | 7 | alimi 1384 |
. . . . 5
|
| 9 | 2, 8 | sylbi 119 |
. . . 4
|
| 10 | mo2icl 2771 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | 1, 11 | alrimi 1455 |
. 2
|
| 13 | dfdisj2 3768 |
. 2
| |
| 14 | 12, 13 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rmo 2356 df-v 2603 df-disj 3767 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |