ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq3 Unicode version

Theorem isoeq3 5463
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq3  |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  T  ( A ,  B ) ) )

Proof of Theorem isoeq3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3787 . . . . 5  |-  ( S  =  T  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) T ( H `  y ) ) )
21bibi2d 230 . . . 4  |-  ( S  =  T  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
322ralbidv 2390 . . 3  |-  ( S  =  T  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
43anbi2d 451 . 2  |-  ( S  =  T  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) T ( H `  y ) ) ) ) )
5 df-isom 4931 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
6 df-isom 4931 . 2  |-  ( H 
Isom  R ,  T  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
74, 5, 63bitr4g 221 1  |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  T  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   A.wral 2348   class class class wbr 3785   -1-1-onto->wf1o 4921   ` cfv 4922    Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-cleq 2074  df-clel 2077  df-ral 2353  df-br 3786  df-isom 4931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator