| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq | Unicode version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2142 |
. 2
| |
| 2 | df-br 3786 |
. 2
| |
| 3 | df-br 3786 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr4g 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 df-br 3786 |
| This theorem is referenced by: breqi 3791 breqd 3796 poeq1 4054 soeq1 4070 frforeq1 4098 weeq1 4111 fveq1 5197 foeqcnvco 5450 f1eqcocnv 5451 isoeq2 5462 isoeq3 5463 ofreq 5735 supeq3 6403 shftfvalg 9706 shftfval 9709 |
| Copyright terms: Public domain | W3C validator |