ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunss1 Unicode version

Theorem iunss1 3689
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iunss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrexv 3059 . . 3  |-  ( A 
C_  B  ->  ( E. x  e.  A  y  e.  C  ->  E. x  e.  B  y  e.  C ) )
2 eliun 3682 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
3 eliun 3682 . . 3  |-  ( y  e.  U_ x  e.  B  C  <->  E. x  e.  B  y  e.  C )
41, 2, 33imtr4g 203 . 2  |-  ( A 
C_  B  ->  (
y  e.  U_ x  e.  A  C  ->  y  e.  U_ x  e.  B  C ) )
54ssrdv 3005 1  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433   E.wrex 2349    C_ wss 2973   U_ciun 3678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-in 2979  df-ss 2986  df-iun 3680
This theorem is referenced by:  iuneq1  3691  iunxdif2  3726
  Copyright terms: Public domain W3C validator