ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnel Unicode version

Theorem nfnel 2346
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfnel.1  |-  F/_ x A
nfnel.2  |-  F/_ x B
Assertion
Ref Expression
nfnel  |-  F/ x  A  e/  B

Proof of Theorem nfnel
StepHypRef Expression
1 df-nel 2340 . 2  |-  ( A  e/  B  <->  -.  A  e.  B )
2 nfnel.1 . . . 4  |-  F/_ x A
3 nfnel.2 . . . 4  |-  F/_ x B
42, 3nfel 2227 . . 3  |-  F/ x  A  e.  B
54nfn 1588 . 2  |-  F/ x  -.  A  e.  B
61, 5nfxfr 1403 1  |-  F/ x  A  e/  B
Colors of variables: wff set class
Syntax hints:   -. wn 3   F/wnf 1389    e. wcel 1433   F/_wnfc 2206    e/ wnel 2339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208  df-nel 2340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator