ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf Unicode version

Theorem nfnf 1509
Description: If  x is not free in  ph, it is not free in  F/ y ph. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
nfal.1  |-  F/ x ph
Assertion
Ref Expression
nfnf  |-  F/ x F/ y ph

Proof of Theorem nfnf
StepHypRef Expression
1 df-nf 1390 . 2  |-  ( F/ y ph  <->  A. y
( ph  ->  A. y ph ) )
2 nfal.1 . . . 4  |-  F/ x ph
32nfal 1508 . . . 4  |-  F/ x A. y ph
42, 3nfim 1504 . . 3  |-  F/ x
( ph  ->  A. y ph )
54nfal 1508 . 2  |-  F/ x A. y ( ph  ->  A. y ph )
61, 5nfxfr 1403 1  |-  F/ x F/ y ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1282   F/wnf 1389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-4 1440  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  nfnfc  2225
  Copyright terms: Public domain W3C validator