| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnf | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in Ⅎ𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfnf | ⊢ Ⅎ𝑥Ⅎ𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1390 | . 2 ⊢ (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑)) | |
| 2 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfal 1508 | . . . 4 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| 4 | 2, 3 | nfim 1504 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ∀𝑦𝜑) |
| 5 | 4 | nfal 1508 | . 2 ⊢ Ⅎ𝑥∀𝑦(𝜑 → ∀𝑦𝜑) |
| 6 | 1, 5 | nfxfr 1403 | 1 ⊢ Ⅎ𝑥Ⅎ𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: nfnfc 2225 |
| Copyright terms: Public domain | W3C validator |