ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpw Unicode version

Theorem nfpw 3394
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1  |-  F/_ x A
Assertion
Ref Expression
nfpw  |-  F/_ x ~P A

Proof of Theorem nfpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-pw 3384 . 2  |-  ~P A  =  { y  |  y 
C_  A }
2 nfcv 2219 . . . 4  |-  F/_ x
y
3 nfpw.1 . . . 4  |-  F/_ x A
42, 3nfss 2992 . . 3  |-  F/ x  y  C_  A
54nfab 2223 . 2  |-  F/_ x { y  |  y 
C_  A }
61, 5nfcxfr 2216 1  |-  F/_ x ~P A
Colors of variables: wff set class
Syntax hints:   {cab 2067   F/_wnfc 2206    C_ wss 2973   ~Pcpw 3382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-in 2979  df-ss 2986  df-pw 3384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator