ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oneluni Unicode version

Theorem oneluni 4186
Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
oneluni  |-  ( B  e.  A  ->  ( A  u.  B )  =  A )

Proof of Theorem oneluni
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onelssi 4184 . 2  |-  ( B  e.  A  ->  B  C_  A )
3 ssequn2 3145 . 2  |-  ( B 
C_  A  <->  ( A  u.  B )  =  A )
42, 3sylib 120 1  |-  ( B  e.  A  ->  ( A  u.  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433    u. cun 2971    C_ wss 2973   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator