| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21fal | Unicode version | ||
| Description: If a wff and its negation are provable, then falsum is provable. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21fal.1 |
|
| pm2.21fal.2 |
|
| Ref | Expression |
|---|---|
| pm2.21fal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21fal.1 |
. 2
| |
| 2 | pm2.21fal.2 |
. 2
| |
| 3 | 1, 2 | pm2.21dd 582 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in2 577 |
| This theorem is referenced by: genpdisj 6713 recvguniqlem 9880 resqrexlemoverl 9907 leabs 9960 climge0 10163 |
| Copyright terms: Public domain | W3C validator |