| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genpdisj | Unicode version | ||
| Description: The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| Ref | Expression |
|---|---|
| genpelvl.1 |
|
| genpelvl.2 |
|
| genpdisj.ord |
|
| genpdisj.com |
|
| Ref | Expression |
|---|---|
| genpdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genpelvl.1 |
. . . . . . . . 9
| |
| 2 | genpelvl.2 |
. . . . . . . . 9
| |
| 3 | 1, 2 | genpelvl 6702 |
. . . . . . . 8
|
| 4 | r2ex 2386 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl6bb 194 |
. . . . . . 7
|
| 6 | 1, 2 | genpelvu 6703 |
. . . . . . . 8
|
| 7 | r2ex 2386 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl6bb 194 |
. . . . . . 7
|
| 9 | 5, 8 | anbi12d 456 |
. . . . . 6
|
| 10 | ee4anv 1850 |
. . . . . 6
| |
| 11 | 9, 10 | syl6bbr 196 |
. . . . 5
|
| 12 | 11 | biimpa 290 |
. . . 4
|
| 13 | an4 550 |
. . . . . . . . . . . . 13
| |
| 14 | prop 6665 |
. . . . . . . . . . . . . . . 16
| |
| 15 | prltlu 6677 |
. . . . . . . . . . . . . . . . 17
| |
| 16 | 15 | 3expib 1141 |
. . . . . . . . . . . . . . . 16
|
| 17 | 14, 16 | syl 14 |
. . . . . . . . . . . . . . 15
|
| 18 | prop 6665 |
. . . . . . . . . . . . . . . 16
| |
| 19 | prltlu 6677 |
. . . . . . . . . . . . . . . . 17
| |
| 20 | 19 | 3expib 1141 |
. . . . . . . . . . . . . . . 16
|
| 21 | 18, 20 | syl 14 |
. . . . . . . . . . . . . . 15
|
| 22 | 17, 21 | im2anan9 562 |
. . . . . . . . . . . . . 14
|
| 23 | genpdisj.ord |
. . . . . . . . . . . . . . 15
| |
| 24 | genpdisj.com |
. . . . . . . . . . . . . . 15
| |
| 25 | 23, 24 | genplt2i 6700 |
. . . . . . . . . . . . . 14
|
| 26 | 22, 25 | syl6 33 |
. . . . . . . . . . . . 13
|
| 27 | 13, 26 | syl5bir 151 |
. . . . . . . . . . . 12
|
| 28 | 27 | imp 122 |
. . . . . . . . . . 11
|
| 29 | 28 | adantlr 460 |
. . . . . . . . . 10
|
| 30 | 29 | adantrlr 468 |
. . . . . . . . 9
|
| 31 | 30 | adantrrr 470 |
. . . . . . . 8
|
| 32 | eqtr2 2099 |
. . . . . . . . . . 11
| |
| 33 | 32 | ad2ant2l 491 |
. . . . . . . . . 10
|
| 34 | 33 | adantl 271 |
. . . . . . . . 9
|
| 35 | ltsonq 6588 |
. . . . . . . . . . 11
| |
| 36 | ltrelnq 6555 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | soirri 4739 |
. . . . . . . . . 10
|
| 38 | breq2 3789 |
. . . . . . . . . 10
| |
| 39 | 37, 38 | mtbii 631 |
. . . . . . . . 9
|
| 40 | 34, 39 | syl 14 |
. . . . . . . 8
|
| 41 | 31, 40 | pm2.21fal 1304 |
. . . . . . 7
|
| 42 | 41 | ex 113 |
. . . . . 6
|
| 43 | 42 | exlimdvv 1818 |
. . . . 5
|
| 44 | 43 | exlimdvv 1818 |
. . . 4
|
| 45 | 12, 44 | mpd 13 |
. . 3
|
| 46 | 45 | inegd 1303 |
. 2
|
| 47 | 46 | ralrimivw 2435 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-mi 6496 df-lti 6497 df-enq 6537 df-nqqs 6538 df-ltnqqs 6543 df-inp 6656 |
| This theorem is referenced by: addclpr 6727 mulclpr 6762 |
| Copyright terms: Public domain | W3C validator |