| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poeq1 | Unicode version | ||
| Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.) |
| Ref | Expression |
|---|---|
| poeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 3787 |
. . . . . 6
| |
| 2 | 1 | notbid 624 |
. . . . 5
|
| 3 | breq 3787 |
. . . . . . 7
| |
| 4 | breq 3787 |
. . . . . . 7
| |
| 5 | 3, 4 | anbi12d 456 |
. . . . . 6
|
| 6 | breq 3787 |
. . . . . 6
| |
| 7 | 5, 6 | imbi12d 232 |
. . . . 5
|
| 8 | 2, 7 | anbi12d 456 |
. . . 4
|
| 9 | 8 | ralbidv 2368 |
. . 3
|
| 10 | 9 | 2ralbidv 2390 |
. 2
|
| 11 | df-po 4051 |
. 2
| |
| 12 | df-po 4051 |
. 2
| |
| 13 | 10, 11, 12 | 3bitr4g 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-ral 2353 df-br 3786 df-po 4051 |
| This theorem is referenced by: soeq1 4070 |
| Copyright terms: Public domain | W3C validator |