ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwssb Unicode version

Theorem pwssb 3761
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
pwssb  |-  ( A 
C_  ~P B  <->  A. x  e.  A  x  C_  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem pwssb
StepHypRef Expression
1 sspwuni 3760 . 2  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
2 unissb 3631 . 2  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
31, 2bitri 182 1  |-  ( A 
C_  ~P B  <->  A. x  e.  A  x  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 103   A.wral 2348    C_ wss 2973   ~Pcpw 3382   U.cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-uni 3602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator