| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raaanlem | Unicode version | ||
| Description: Special case of raaan 3347 where |
| Ref | Expression |
|---|---|
| raaan.1 |
|
| raaan.2 |
|
| Ref | Expression |
|---|---|
| raaanlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2141 |
. . . 4
| |
| 2 | 1 | cbvexv 1836 |
. . 3
|
| 3 | raaan.1 |
. . . . 5
| |
| 4 | 3 | r19.28m 3331 |
. . . 4
|
| 5 | 4 | ralbidv 2368 |
. . 3
|
| 6 | 2, 5 | sylbi 119 |
. 2
|
| 7 | nfcv 2219 |
. . . 4
| |
| 8 | raaan.2 |
. . . 4
| |
| 9 | 7, 8 | nfralxy 2402 |
. . 3
|
| 10 | 9 | r19.27m 3336 |
. 2
|
| 11 | 6, 10 | bitrd 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 |
| This theorem is referenced by: raaan 3347 |
| Copyright terms: Public domain | W3C validator |