| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexnalim | Unicode version | ||
| Description: Relationship between restricted universal and existential quantifiers. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| rexnalim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 |
. 2
| |
| 2 | exanaliim 1578 |
. . 3
| |
| 3 | df-ral 2353 |
. . 3
| |
| 4 | 2, 3 | sylnibr 634 |
. 2
|
| 5 | 1, 4 | sylbi 119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-ral 2353 df-rex 2354 |
| This theorem is referenced by: ralexim 2360 iundif2ss 3743 alzdvds 10254 |
| Copyright terms: Public domain | W3C validator |