| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbi | Unicode version | ||
| Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 380 |
. . 3
| |
| 2 | 1 | sbbii 1688 |
. 2
|
| 3 | sbim 1868 |
. . . 4
| |
| 4 | sbim 1868 |
. . . 4
| |
| 5 | 3, 4 | anbi12i 447 |
. . 3
|
| 6 | sban 1870 |
. . 3
| |
| 7 | dfbi2 380 |
. . 3
| |
| 8 | 5, 6, 7 | 3bitr4i 210 |
. 2
|
| 9 | 2, 8 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sblbis 1875 sbrbis 1876 sbco 1883 sbcocom 1885 elsb3 1893 elsb4 1894 sb8eu 1954 sb8euh 1964 pm13.183 2732 sbcbig 2860 sb8iota 4894 |
| Copyright terms: Public domain | W3C validator |