| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbid | Unicode version | ||
| Description: Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcbid.1 |
|
| sbcbid.2 |
|
| Ref | Expression |
|---|---|
| sbcbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbid.1 |
. . . 4
| |
| 2 | sbcbid.2 |
. . . 4
| |
| 3 | 1, 2 | abbid 2195 |
. . 3
|
| 4 | 3 | eleq2d 2148 |
. 2
|
| 5 | df-sbc 2816 |
. 2
| |
| 6 | df-sbc 2816 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-sbc 2816 |
| This theorem is referenced by: sbcbidv 2872 csbeq2d 2930 bezoutlemstep 10386 |
| Copyright terms: Public domain | W3C validator |