HomeHome Intuitionistic Logic Explorer
Theorem List (p. 29 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2801-2900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdeqri 2801 Property of conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  -> 
 ph )   =>    |-  ( x  =  y 
 ->  ph )
 
Theoremcdeqth 2802 Deduce conditional equality from a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ph   =>    |- CondEq ( x  =  y  -> 
 ph )
 
Theoremcdeqnot 2803 Distribute conditional equality over negation. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  ( -.  ph  <->  -. 
 ps ) )
 
Theoremcdeqal 2804* Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  ( A. z ph  <->  A. z ps )
 )
 
Theoremcdeqab 2805* Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  { z  |  ph }  =  {
 z  |  ps }
 )
 
Theoremcdeqal1 2806* Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  ( A. x ph  <->  A. y ps )
 )
 
Theoremcdeqab1 2807* Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  { x  |  ph }  =  {
 y  |  ps }
 )
 
Theoremcdeqim 2808 Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   &    |- CondEq ( x  =  y  ->  ( ch 
 <-> 
 th ) )   =>    |- CondEq ( x  =  y  ->  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) )
 
Theoremcdeqcv 2809 Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  x  =  y )
 
Theoremcdeqeq 2810 Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  A  =  B )   &    |- CondEq ( x  =  y  ->  C  =  D )   =>    |- CondEq ( x  =  y  ->  ( A  =  C  <->  B  =  D ) )
 
Theoremcdeqel 2811 Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  A  =  B )   &    |- CondEq ( x  =  y  ->  C  =  D )   =>    |- CondEq ( x  =  y  ->  ( A  e.  C  <->  B  e.  D ) )
 
Theoremnfcdeq 2812* If we have a conditional equality proof, where  ph is  ph ( x ) and  ps is  ph (
y ), and  ph (
x ) in fact does not have  x free in it according to  F/, then  ph ( x )  <->  ph ( y ) unconditionally. This proves that  F/ x ph is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( ph  <->  ps )
 
Theoremnfccdeq 2813* Variation of nfcdeq 2812 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x A   &    |- CondEq ( x  =  y  ->  A  =  B )   =>    |-  A  =  B
 
2.1.8  Russell's Paradox
 
Theoremru 2814 Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 
A  e.  _V, asserted that any collection of sets  A is a set i.e. belongs to the universe 
_V of all sets. In particular, by substituting  { x  |  x  e/  x } (the "Russell class") for  A, it asserted  { x  |  x  e/  x }  e.  _V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove  { x  |  x  e/  x }  e/  _V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that  A is a set only when it is smaller than some other set  B. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 3896. (Contributed by NM, 7-Aug-1994.)

 |- 
 { x  |  x  e/  x }  e/  _V
 
2.1.9  Proper substitution of classes for sets
 
Syntaxwsbc 2815 Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class  A for setvar variable  x in wff  ph."
 wff  [. A  /  x ].
 ph
 
Definitiondf-sbc 2816 Define the proper substitution of a class for a set.

When  A is a proper class, our definition evaluates to false. This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 2840 for our definition, which always evaluates to true for proper classes.

Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 2817 below). Unfortunately, Quine's definition requires a recursive syntactical breakdown of  ph, and it does not seem possible to express it with a single closed formula.

If we did not want to commit to any specific proper class behavior, we could use this definition only to prove theorem dfsbcq 2817, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 2816 in the form of sbc8g 2822. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of  A in every use of this definition) we allow direct reference to df-sbc 2816 and assert that  [. A  /  x ]. ph is always false when  A is a proper class.

The related definition df-csb defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.)

 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph } )
 
Theoremdfsbcq 2817 This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 2816 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 2818 instead of df-sbc 2816. (dfsbcq2 2818 is needed because unlike Quine we do not overload the df-sb 1686 syntax.) As a consequence of these theorems, we can derive sbc8g 2822, which is a weaker version of df-sbc 2816 that leaves substitution undefined when  A is a proper class.

However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 2822, so we will allow direct use of df-sbc 2816. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.)

 |-  ( A  =  B  ->  ( [. A  /  x ]. ph  <->  [. B  /  x ].
 ph ) )
 
Theoremdfsbcq2 2818 This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1686 and substitution for class variables df-sbc 2816. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2817. (Contributed by NM, 31-Dec-2016.)
 |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ].
 ph ) )
 
Theoremsbsbc 2819 Show that df-sb 1686 and df-sbc 2816 are equivalent when the class term  A in df-sbc 2816 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1686 for proofs involving df-sbc 2816. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.)
 |-  ( [ y  /  x ] ph  <->  [. y  /  x ].
 ph )
 
Theoremsbceq1d 2820 Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( [. A  /  x ].
 ps 
 <-> 
 [. B  /  x ].
 ps ) )
 
Theoremsbceq1dd 2821 Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  [. A  /  x ]. ps )   =>    |-  ( ph  ->  [. B  /  x ]. ps )
 
Theoremsbc8g 2822 This is the closest we can get to df-sbc 2816 if we start from dfsbcq 2817 (see its comments) and dfsbcq2 2818. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph } ) )
 
Theoremsbcex 2823 By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.)
 |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
 
Theoremsbceq1a 2824 Equality theorem for class substitution. Class version of sbequ12 1694. (Contributed by NM, 26-Sep-2003.)
 |-  ( x  =  A  ->  ( ph  <->  [. A  /  x ].
 ph ) )
 
Theoremsbceq2a 2825 Equality theorem for class substitution. Class version of sbequ12r 1695. (Contributed by NM, 4-Jan-2017.)
 |-  ( A  =  x 
 ->  ( [. A  /  x ]. ph  <->  ph ) )
 
Theoremspsbc 2826 Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1698 and rspsbc 2896. (Contributed by NM, 16-Jan-2004.)
 |-  ( A  e.  V  ->  ( A. x ph  -> 
 [. A  /  x ].
 ph ) )
 
Theoremspsbcd 2827 Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1698 and rspsbc 2896. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A. x ps )   =>    |-  ( ph  ->  [. A  /  x ]. ps )
 
Theoremsbcth 2828 A substitution into a theorem remains true (when  A is a set). (Contributed by NM, 5-Nov-2005.)
 |-  ph   =>    |-  ( A  e.  V  -> 
 [. A  /  x ].
 ph )
 
Theoremsbcthdv 2829* Deduction version of sbcth 2828. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  /\  A  e.  V )  ->  [. A  /  x ]. ps )
 
Theoremsbcid 2830 An identity theorem for substitution. See sbid 1697. (Contributed by Mario Carneiro, 18-Feb-2017.)
 |-  ( [. x  /  x ]. ph  <->  ph )
 
Theoremnfsbc1d 2831 Deduction version of nfsbc1 2832. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/ x [. A  /  x ]. ps )
 
Theoremnfsbc1 2832 Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x A   =>    |- 
 F/ x [. A  /  x ]. ph
 
Theoremnfsbc1v 2833* Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.)
 |- 
 F/ x [. A  /  x ]. ph
 
Theoremnfsbcd 2834 Deduction version of nfsbc 2835. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x [. A  /  y ]. ps )
 
Theoremnfsbc 2835 Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x [. A  /  y ]. ph
 
Theoremsbcco 2836* A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ].
 ph )
 
Theoremsbcco2 2837* A composition law for class substitution. Importantly,  x may occur free in the class expression substituted for  A. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( x  =  y 
 ->  A  =  B )   =>    |-  ( [. x  /  y ]. [. B  /  x ].
 ph 
 <-> 
 [. A  /  x ].
 ph )
 
Theoremsbc5 2838* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  ( [. A  /  x ]. ph  <->  E. x ( x  =  A  /\  ph )
 )
 
Theoremsbc6g 2839* An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
 ) )
 
Theoremsbc6 2840* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
 |-  A  e.  _V   =>    |-  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
 )
 
Theoremsbc7 2841* An equivalence for class substitution in the spirit of df-clab 2068. Note that  x and  A don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( [. A  /  x ]. ph  <->  E. y ( y  =  A  /\  [. y  /  x ]. ph )
 )
 
Theoremcbvsbc 2842 Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  y ]. ps )
 
Theoremcbvsbcv 2843* Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  y ]. ps )
 
Theoremsbciegft 2844* Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 2845.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( ( A  e.  V  /\  F/ x ps  /\ 
 A. x ( x  =  A  ->  ( ph 
 <->  ps ) ) ) 
 ->  ( [. A  /  x ]. ph  <->  ps ) )
 
Theoremsbciegf 2845* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
 
Theoremsbcieg 2846* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
 
Theoremsbcie2g 2847* Conversion of implicit substitution to explicit class substitution. This version of sbcie 2848 avoids a disjointness condition on  x and  A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  (
 y  =  A  ->  ( ps  <->  ch ) )   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ch ) )
 
Theoremsbcie 2848* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  ps )
 
Theoremsbciedf 2849* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  F/ x ph   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <->  ch ) )
 
Theoremsbcied 2850* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <->  ch ) )
 
Theoremsbcied2 2851* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A  =  B )   &    |-  (
 ( ph  /\  x  =  B )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <->  ch ) )
 
Theoremelrabsf 2852 Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2747 has implicit substitution). The hypothesis specifies that 
x must not be a free variable in  B. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
 |-  F/_ x B   =>    |-  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ( A  e.  B  /\  [. A  /  x ].
 ph ) )
 
Theoremeqsbc3 2853* Substitution applied to an atomic wff. Set theory version of eqsb3 2182. (Contributed by Andrew Salmon, 29-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
 
Theoremsbcng 2854 Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ].
 ph ) )
 
Theoremsbcimg 2855 Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  ->  ps )  <->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) ) )
 
Theoremsbcan 2856 Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.)
 |-  ( [. A  /  x ]. ( ph  /\  ps ) 
 <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
 )
 
Theoremsbcang 2857 Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
 <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
 ) )
 
Theoremsbcor 2858 Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.)
 |-  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) )
 
Theoremsbcorg 2859 Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
 
Theoremsbcbig 2860 Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  <->  ps )  <->  ( [. A  /  x ]. ph  <->  [. A  /  x ].
 ps ) ) )
 
Theoremsbcn1 2861 Move negation in and out of class substitution. One direction of sbcng 2854 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ].  -.  ph  ->  -.  [. A  /  x ].
 ph )
 
Theoremsbcim1 2862 Distribution of class substitution over implication. One direction of sbcimg 2855 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ]. ( ph  ->  ps )  ->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) )
 
Theoremsbcbi1 2863 Distribution of class substitution over biconditional. One direction of sbcbig 2860 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ]. ( ph  <->  ps )  ->  ( [. A  /  x ].
 ph 
 <-> 
 [. A  /  x ].
 ps ) )
 
Theoremsbcbi2 2864 Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( [. A  /  x ].
 ph 
 <-> 
 [. A  /  x ].
 ps ) )
 
Theoremsbcal 2865* Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.)
 |-  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph )
 
Theoremsbcalg 2866* Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph ) )
 
Theoremsbcex2 2867* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
 |-  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph )
 
Theoremsbcexg 2868* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph ) )
 
Theoremsbceqal 2869* A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.)
 |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  x  =  B )  ->  A  =  B )
 )
 
Theoremsbeqalb 2870* Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
 |-  ( A  e.  V  ->  ( ( A. x ( ph  <->  x  =  A )  /\  A. x (
 ph 
 <->  x  =  B ) )  ->  A  =  B ) )
 
Theoremsbcbid 2871 Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <-> 
 [. A  /  x ].
 ch ) )
 
Theoremsbcbidv 2872* Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <-> 
 [. A  /  x ].
 ch ) )
 
Theoremsbcbii 2873 Formula-building inference rule for class substitution. (Contributed by NM, 11-Nov-2005.)
 |-  ( ph  <->  ps )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  x ].
 ps )
 
Theoremeqsbc3r 2874* eqsbc3 2853 with setvar variable on right side of equals sign. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  x  <->  B  =  A )
 )
 
Theoremsbc3an 2875 Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ]. ( ph  /\  ps  /\ 
 ch )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch ) )
 
Theoremsbcel1v 2876* Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ]. x  e.  B  <->  A  e.  B )
 
Theoremsbcel2gv 2877* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( B  e.  V  ->  ( [. B  /  x ]. A  e.  x  <->  A  e.  B ) )
 
Theoremsbcel21v 2878* Class substitution into a membership relation. One direction of sbcel2gv 2877 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. B  /  x ]. A  e.  x  ->  A  e.  B )
 
Theoremsbcimdv 2879* Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1386). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps  ->  [. A  /  x ].
 ch ) )
 
Theoremsbctt 2880 Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  ( ( A  e.  V  /\  F/ x ph )  ->  ( [. A  /  x ]. ph  <->  ph ) )
 
Theoremsbcgf 2881 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |- 
 F/ x ph   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
 
Theoremsbc19.21g 2882 Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.)
 |- 
 F/ x ph   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  ->  ps )  <->  ( ph  ->  [. A  /  x ]. ps ) ) )
 
Theoremsbcg 2883* Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 2881. (Contributed by Alan Sare, 10-Nov-2012.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
 
Theoremsbc2iegf 2884* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |- 
 F/ x ps   &    |-  F/ y ps   &    |-  F/ x  B  e.  W   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( [. A  /  x ].
 [. B  /  y ]. ph  <->  ps ) )
 
Theoremsbc2ie 2885* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
 
Theoremsbc2iedv 2886* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ph  ->  ( ( x  =  A  /\  y  =  B )  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( [. A  /  x ]. [. B  /  y ]. ps  <->  ch ) )
 
Theoremsbc3ie 2887* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  (
 ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps ) )   =>    |-  ( [. A  /  x ]. [. B  /  y ]. [. C  /  z ]. ph  <->  ps )
 
Theoremsbccomlem 2888* Lemma for sbccom 2889. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
 |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  /  y ]. [. A  /  x ].
 ph )
 
Theoremsbccom 2889* Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
 |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  /  y ]. [. A  /  x ].
 ph )
 
Theoremsbcralt 2890* Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
 |-  ( ( A  e.  V  /\  F/_ y A ) 
 ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
 
Theoremsbcrext 2891* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
 |-  ( F/_ y A  ->  (
 [. A  /  x ].
 E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
 )
 
Theoremsbcralg 2892* Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
 
Theoremsbcrex 2893* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
 |-  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
 
Theoremsbcreug 2894* Interchange class substitution and restricted uniqueness quantifier. (Contributed by NM, 24-Feb-2013.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. E! y  e.  B  ph  <->  E! y  e.  B  [. A  /  x ]. ph ) )
 
Theoremsbcabel 2895* Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
 |-  F/_ x B   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. { y  | 
 ph }  e.  B  <->  { y  |  [. A  /  x ]. ph }  e.  B ) )
 
Theoremrspsbc 2896* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1698 and spsbc 2826. See also rspsbca 2897 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
 |-  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  [. A  /  x ]. ph )
 )
 
Theoremrspsbca 2897* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
 |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  [. A  /  x ]. ph )
 
Theoremrspesbca 2898* Existence form of rspsbca 2897. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
 |-  ( ( A  e.  B  /\  [. A  /  x ].
 ph )  ->  E. x  e.  B  ph )
 
Theoremspesbc 2899 Existence form of spsbc 2826. (Contributed by Mario Carneiro, 18-Nov-2016.)
 |-  ( [. A  /  x ]. ph  ->  E. x ph )
 
Theoremspesbcd 2900 form of spsbc 2826. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ph  ->  [. A  /  x ]. ps )   =>    |-  ( ph  ->  E. x ps )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >