ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2yz Unicode version

Theorem sbco2yz 1878
Description: This is a version of sbco2 1880 where  z is distinct from 
y. It is a lemma on the way to proving sbco2 1880 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2yz.1  |-  F/ z
ph
Assertion
Ref Expression
sbco2yz  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco2yz
StepHypRef Expression
1 sbco2yz.1 . . . 4  |-  F/ z
ph
21nfsb 1863 . . 3  |-  F/ z [ y  /  x ] ph
32nfri 1452 . 2  |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
4 sbequ 1761 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
53, 4sbieh 1713 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   F/wnf 1389   [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by:  sbco2h  1879
  Copyright terms: Public domain W3C validator