| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcom2v | Unicode version | ||
| Description: Lemma for proving sbcom2 1904. It is the same as sbcom2 1904 but with
additional distinct variable constraints on |
| Ref | Expression |
|---|---|
| sbcom2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 1407 |
. . 3
| |
| 2 | bi2.04 246 |
. . . . . 6
| |
| 3 | 2 | albii 1399 |
. . . . 5
|
| 4 | 19.21v 1794 |
. . . . 5
| |
| 5 | 3, 4 | bitri 182 |
. . . 4
|
| 6 | 5 | albii 1399 |
. . 3
|
| 7 | 19.21v 1794 |
. . . 4
| |
| 8 | 7 | albii 1399 |
. . 3
|
| 9 | 1, 6, 8 | 3bitr3i 208 |
. 2
|
| 10 | sb6 1807 |
. . 3
| |
| 11 | sb6 1807 |
. . . . 5
| |
| 12 | 11 | imbi2i 224 |
. . . 4
|
| 13 | 12 | albii 1399 |
. . 3
|
| 14 | 10, 13 | bitri 182 |
. 2
|
| 15 | sb6 1807 |
. . 3
| |
| 16 | sb6 1807 |
. . . . 5
| |
| 17 | 16 | imbi2i 224 |
. . . 4
|
| 18 | 17 | albii 1399 |
. . 3
|
| 19 | 15, 18 | bitri 182 |
. 2
|
| 20 | 9, 14, 19 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: sbcom2v2 1903 |
| Copyright terms: Public domain | W3C validator |