| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcom2 | Unicode version | ||
| Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbcom2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcom2v2 1903 |
. . . 4
| |
| 2 | 1 | sbbii 1688 |
. . 3
|
| 3 | sbcom2v2 1903 |
. . 3
| |
| 4 | 2, 3 | bitri 182 |
. 2
|
| 5 | ax-17 1459 |
. . 3
| |
| 6 | 5 | sbco2v 1862 |
. 2
|
| 7 | ax-17 1459 |
. . . 4
| |
| 8 | 7 | sbco2v 1862 |
. . 3
|
| 9 | 8 | sbbii 1688 |
. 2
|
| 10 | 4, 6, 9 | 3bitr3i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: 2sb5rf 1906 2sb6rf 1907 sbco4lem 1923 sbco4 1924 sbmo 2000 cnvopab 4746 |
| Copyright terms: Public domain | W3C validator |