| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ8 | Unicode version | ||
| Description: Elimination of equality from antecedent after substitution. (Contributed by NM, 5-Aug-1993.) (Proof revised by Jim Kingdon, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| sbequ8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.4 247 |
. . 3
| |
| 2 | simpl 107 |
. . . . . 6
| |
| 3 | pm3.35 339 |
. . . . . 6
| |
| 4 | 2, 3 | jca 300 |
. . . . 5
|
| 5 | simpl 107 |
. . . . . 6
| |
| 6 | pm3.4 326 |
. . . . . 6
| |
| 7 | 5, 6 | jca 300 |
. . . . 5
|
| 8 | 4, 7 | impbii 124 |
. . . 4
|
| 9 | 8 | exbii 1536 |
. . 3
|
| 10 | 1, 9 | anbi12i 447 |
. 2
|
| 11 | df-sb 1686 |
. 2
| |
| 12 | df-sb 1686 |
. 2
| |
| 13 | 10, 11, 12 | 3bitr4ri 211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: sbidm 1772 |
| Copyright terms: Public domain | W3C validator |