ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbbid Unicode version

Theorem sbbid 1767
Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.)
Hypotheses
Ref Expression
sbbid.1  |-  F/ x ph
sbbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
sbbid  |-  ( ph  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch )
)

Proof of Theorem sbbid
StepHypRef Expression
1 sbbid.1 . . 3  |-  F/ x ph
2 sbbid.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2alrimi 1455 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
4 spsbbi 1765 . 2  |-  ( A. x ( ps  <->  ch )  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch )
)
53, 4syl 14 1  |-  ( ph  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282   F/wnf 1389   [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by:  bezoutlemmain  10387
  Copyright terms: Public domain W3C validator