ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbimi Unicode version

Theorem sbimi 1687
Description: Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.)
Hypothesis
Ref Expression
sbimi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
sbimi  |-  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )

Proof of Theorem sbimi
StepHypRef Expression
1 sbimi.1 . . . 4  |-  ( ph  ->  ps )
21imim2i 12 . . 3  |-  ( ( x  =  y  ->  ph )  ->  ( x  =  y  ->  ps ) )
31anim2i 334 . . . 4  |-  ( ( x  =  y  /\  ph )  ->  ( x  =  y  /\  ps )
)
43eximi 1531 . . 3  |-  ( E. x ( x  =  y  /\  ph )  ->  E. x ( x  =  y  /\  ps ) )
52, 4anim12i 331 . 2  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  ->  ( (
x  =  y  ->  ps )  /\  E. x
( x  =  y  /\  ps ) ) )
6 df-sb 1686 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
7 df-sb 1686 . 2  |-  ( [ y  /  x ] ps 
<->  ( ( x  =  y  ->  ps )  /\  E. x ( x  =  y  /\  ps ) ) )
85, 6, 73imtr4i 199 1  |-  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   E.wex 1421   [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-sb 1686
This theorem is referenced by:  sbbii  1688  sb6f  1724  hbsb3  1729  sbidm  1772  sbco  1883  sbcocom  1885  elsb3  1893  elsb4  1894  sbalyz  1916  hbsb4t  1930  moimv  2007  oprcl  3594  peano1  4335  peano2  4336
  Copyright terms: Public domain W3C validator