| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbsb4t | Unicode version | ||
| Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1929). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| hbsb4t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1473 |
. . 3
| |
| 2 | 1 | hbsb4 1929 |
. 2
|
| 3 | spsbim 1764 |
. . . . 5
| |
| 4 | 3 | sps 1470 |
. . . 4
|
| 5 | ax-4 1440 |
. . . . . . 7
| |
| 6 | 5 | sbimi 1687 |
. . . . . 6
|
| 7 | 6 | alimi 1384 |
. . . . 5
|
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | 4, 8 | imim12d 73 |
. . 3
|
| 10 | 9 | a7s 1383 |
. 2
|
| 11 | 2, 10 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: nfsb4t 1931 |
| Copyright terms: Public domain | W3C validator |