| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbnf2 | Unicode version | ||
| Description: Two ways of expressing
" |
| Ref | Expression |
|---|---|
| sbnf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albiim 1417 |
. 2
| |
| 2 | df-nf 1390 |
. . . . 5
| |
| 3 | sbhb 1857 |
. . . . . 6
| |
| 4 | 3 | albii 1399 |
. . . . 5
|
| 5 | alcom 1407 |
. . . . 5
| |
| 6 | 2, 4, 5 | 3bitri 204 |
. . . 4
|
| 7 | nfv 1461 |
. . . . . . 7
| |
| 8 | 7 | sb8 1777 |
. . . . . 6
|
| 9 | nfs1v 1856 |
. . . . . . . 8
| |
| 10 | 9 | sblim 1872 |
. . . . . . 7
|
| 11 | 10 | albii 1399 |
. . . . . 6
|
| 12 | 8, 11 | bitri 182 |
. . . . 5
|
| 13 | 12 | albii 1399 |
. . . 4
|
| 14 | alcom 1407 |
. . . 4
| |
| 15 | 6, 13, 14 | 3bitri 204 |
. . 3
|
| 16 | sbhb 1857 |
. . . . . 6
| |
| 17 | 16 | albii 1399 |
. . . . 5
|
| 18 | alcom 1407 |
. . . . 5
| |
| 19 | 2, 17, 18 | 3bitri 204 |
. . . 4
|
| 20 | nfv 1461 |
. . . . . . 7
| |
| 21 | 20 | sb8 1777 |
. . . . . 6
|
| 22 | nfs1v 1856 |
. . . . . . . 8
| |
| 23 | 22 | sblim 1872 |
. . . . . . 7
|
| 24 | 23 | albii 1399 |
. . . . . 6
|
| 25 | 21, 24 | bitri 182 |
. . . . 5
|
| 26 | 25 | albii 1399 |
. . . 4
|
| 27 | 19, 26 | bitri 182 |
. . 3
|
| 28 | 15, 27 | anbi12i 447 |
. 2
|
| 29 | anidm 388 |
. 2
| |
| 30 | 1, 28, 29 | 3bitr2ri 207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sbnfc2 2962 |
| Copyright terms: Public domain | W3C validator |