| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spimth | Unicode version | ||
| Description: Closed theorem form of spim 1666. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spimth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2 54 |
. . . . . 6
| |
| 2 | 1 | imim2d 53 |
. . . . 5
|
| 3 | 2 | imp 122 |
. . . 4
|
| 4 | 3 | com23 77 |
. . 3
|
| 5 | 4 | al2imi 1387 |
. 2
|
| 6 | ax9o 1628 |
. 2
| |
| 7 | 5, 6 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: equveli 1682 |
| Copyright terms: Public domain | W3C validator |