| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equveli | Unicode version | ||
| Description: A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1681.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| equveli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1416 |
. 2
| |
| 2 | ax12or 1443 |
. . 3
| |
| 3 | equequ1 1638 |
. . . . . . . . 9
| |
| 4 | equequ1 1638 |
. . . . . . . . 9
| |
| 5 | 3, 4 | imbi12d 232 |
. . . . . . . 8
|
| 6 | 5 | sps 1470 |
. . . . . . 7
|
| 7 | 6 | dral2 1659 |
. . . . . 6
|
| 8 | equid 1629 |
. . . . . . . . 9
| |
| 9 | 8 | a1bi 241 |
. . . . . . . 8
|
| 10 | 9 | biimpri 131 |
. . . . . . 7
|
| 11 | 10 | sps 1470 |
. . . . . 6
|
| 12 | 7, 11 | syl6bi 161 |
. . . . 5
|
| 13 | 12 | adantrd 273 |
. . . 4
|
| 14 | equequ1 1638 |
. . . . . . . . . 10
| |
| 15 | equequ1 1638 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | imbi12d 232 |
. . . . . . . . 9
|
| 17 | 16 | sps 1470 |
. . . . . . . 8
|
| 18 | 17 | dral1 1658 |
. . . . . . 7
|
| 19 | equid 1629 |
. . . . . . . . 9
| |
| 20 | ax-4 1440 |
. . . . . . . . 9
| |
| 21 | 19, 20 | mpi 15 |
. . . . . . . 8
|
| 22 | equcomi 1632 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | 18, 23 | syl6bi 161 |
. . . . . 6
|
| 25 | 24 | adantld 272 |
. . . . 5
|
| 26 | hba1 1473 |
. . . . . . . . . 10
| |
| 27 | hbequid 1446 |
. . . . . . . . . . 11
| |
| 28 | 27 | a1i 9 |
. . . . . . . . . 10
|
| 29 | ax-4 1440 |
. . . . . . . . . 10
| |
| 30 | 26, 28, 29 | hbimd 1505 |
. . . . . . . . 9
|
| 31 | 30 | a5i 1475 |
. . . . . . . 8
|
| 32 | equtr 1635 |
. . . . . . . . . 10
| |
| 33 | ax-8 1435 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | imim12d 73 |
. . . . . . . . 9
|
| 35 | 34 | ax-gen 1378 |
. . . . . . . 8
|
| 36 | 19.26 1410 |
. . . . . . . . 9
| |
| 37 | spimth 1663 |
. . . . . . . . 9
| |
| 38 | 36, 37 | sylbir 133 |
. . . . . . . 8
|
| 39 | 31, 35, 38 | sylancl 404 |
. . . . . . 7
|
| 40 | 8, 39 | mpii 43 |
. . . . . 6
|
| 41 | 40 | adantrd 273 |
. . . . 5
|
| 42 | 25, 41 | jaoi 668 |
. . . 4
|
| 43 | 13, 42 | jaoi 668 |
. . 3
|
| 44 | 2, 43 | ax-mp 7 |
. 2
|
| 45 | 1, 44 | sylbi 119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |