![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.29r | GIF version |
Description: Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
19.29r | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29 1551 | . 2 ⊢ ((∀𝑥𝜓 ∧ ∃𝑥𝜑) → ∃𝑥(𝜓 ∧ 𝜑)) | |
2 | ancom 262 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜓 ∧ ∃𝑥𝜑)) | |
3 | exancom 1539 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
4 | 1, 2, 3 | 3imtr4i 199 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 19.29r2 1553 19.29x 1554 exan 1623 ax9o 1628 equvini 1681 eu2 1985 intab 3665 imadiflem 4998 bj-inex 10698 |
Copyright terms: Public domain | W3C validator |