| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.29r2 | GIF version | ||
| Description: Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| 19.29r2 | ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.29r 1552 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓)) | |
| 2 | 19.29r 1552 | . . 3 ⊢ ((∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑦(𝜑 ∧ 𝜓)) | |
| 3 | 2 | eximi 1531 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | syl 14 | 1 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |