| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.41h | GIF version | ||
| Description: Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1616 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 19.41h.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.41h | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1562 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | 19.41h.1 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | id 19 | . . . . 5 ⊢ (𝜓 → 𝜓) | |
| 4 | 2, 3 | exlimih 1524 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) |
| 5 | 4 | anim2i 334 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 6 | 1, 5 | syl 14 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 7 | pm3.21 260 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 8 | 2, 7 | eximdh 1542 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 9 | 8 | impcom 123 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 10 | 6, 9 | impbii 124 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: 19.42h 1617 sbh 1699 sbidm 1772 19.41v 1823 2exeu 2033 |
| Copyright terms: Public domain | W3C validator |