| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximdh | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.) |
| Ref | Expression |
|---|---|
| eximdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| eximdh.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximdh | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | eximdh.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | alrimih 1398 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
| 4 | exim 1530 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∃𝑥𝜓 → ∃𝑥𝜒)) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: eximd 1543 19.41h 1615 hbexd 1624 equsex 1656 equsexd 1657 spimeh 1667 sbiedh 1710 exdistrfor 1721 eximdv 1801 cbvexdh 1842 mopick2 2024 2euex 2028 bj-sbimedh 10582 |
| Copyright terms: Public domain | W3C validator |