ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.43 GIF version

Theorem 19.43 1559
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.43 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))

Proof of Theorem 19.43
StepHypRef Expression
1 hbe1 1424 . . . 4 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
2 hbe1 1424 . . . 4 (∃𝑥𝜓 → ∀𝑥𝑥𝜓)
31, 2hbor 1478 . . 3 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) → ∀𝑥(∃𝑥𝜑 ∨ ∃𝑥𝜓))
4 19.8a 1522 . . . 4 (𝜑 → ∃𝑥𝜑)
5 19.8a 1522 . . . 4 (𝜓 → ∃𝑥𝜓)
64, 5orim12i 708 . . 3 ((𝜑𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓))
73, 6exlimih 1524 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓))
8 orc 665 . . . 4 (𝜑 → (𝜑𝜓))
98eximi 1531 . . 3 (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))
10 olc 664 . . . 4 (𝜓 → (𝜑𝜓))
1110eximi 1531 . . 3 (∃𝑥𝜓 → ∃𝑥(𝜑𝜓))
129, 11jaoi 668 . 2 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
137, 12impbii 124 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wb 103  wo 661  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  19.44  1612  19.45  1613  19.34  1614  sborv  1811  r19.43  2512  rexun  3152  unipr  3615  uniun  3620  unopab  3857  dmun  4560  coundi  4842  coundir  4843
  Copyright terms: Public domain W3C validator